Share Email Print
cover

Proceedings Paper

Self-contained high-authority control for miniature flight systems
Author(s): Gareth J. Knowles; Ross W. Bird; Ron Barrett
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

UAV's, UCAV's, miniaturized munitions and smart bombs have a variety of objectives clamoring for easement of weight/volume restrictions. These include anti-jam, explosive, servo control, electronics packaging, GPS and other required functions. The possibility of freeing up valuable real estate in the missile itself is most attractive for such applications. QorTek has developed the first self-contained high authority control surface to replace externally activated steering fins or canards. These flight actuation systems require only external control signal and power. Moreover, the technology easily scales to micro munitions. Because of their unique composite structure, these powerful solid-state devices offer exceptional performance in a durable package suitable for miniature munitions. The purpose of this paper is to discuss new breakthroughs in piezo-actuated technology that minimize vol./weight enabling a self-contained flight control actuation system that eliminates the need for servo controls. The presentation will focus on the new design that enables integration into high angular displacement actuation into a graphite epoxy fabricated RALA flight control actuator that can handle the aerodynamic loading conditions.

Paper Details

Date Published: 29 July 2004
PDF: 8 pages
Proc. SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, (29 July 2004); doi: 10.1117/12.546330
Show Author Affiliations
Gareth J. Knowles, QorTek, Inc. (United States)
Ross W. Bird, QorTek, Inc. (United States)
Ron Barrett, Auburn Univ. (United States)


Published in SPIE Proceedings Vol. 5388:
Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies
Eric H. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top