Share Email Print
cover

Proceedings Paper

Plasma-enhanced chemical vapor deposition of low- loss as-grown germanosilicate layers for optical waveguides
Author(s): Feridun Ay; Sedat Agan; Atilla Aydinli
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguides. Plasma enhanced chemical vapor deposition (PECVD) technique was used to grow the films using silane, germane and nitrous oxide as precursor gases. Chemical composition was monitored by Fourier transform infrared (FTIR) spectroscopy. N-H bond concentration of the films decreased from 0.43x1022 cm-3 down to below 0.06x1022 cm-3, by a factor of seven as the GeH4 flow rate increased from 0 to 70 sccm. A simultaneous decrease of O-H related bonds was also observed by a factor of 10 in the same germane flow range. The measured TE rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=632.8 nm were found to increase from are 0.20 ± 0.02 to 6.46 ± 0.04 dB/cm as the germane flow rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=1550 nm were found to decrease from 0.32 ± 0.03 down to 0.14 ± 0.06 dB/cm for the same samples leading to the lowest values reported so far in the literature, eliminating the need for high temperature annealing as is usually done for these materials to be used in waveguide devices.

Paper Details

Date Published: 18 August 2004
PDF: 7 pages
Proc. SPIE 5451, Integrated Optics and Photonic Integrated Circuits, (18 August 2004); doi: 10.1117/12.546080
Show Author Affiliations
Feridun Ay, Bilkent Univ. (Turkey)
Sedat Agan, Kirikkale Univ. (Turkey)
Atilla Aydinli, Bilkent Univ. (Turkey)


Published in SPIE Proceedings Vol. 5451:
Integrated Optics and Photonic Integrated Circuits
Giancarlo C. Righini; Seppo Honkanen, Editor(s)

© SPIE. Terms of Use
Back to Top