Share Email Print

Proceedings Paper

Uncooled 40Gb/s 4-level directly modulated laser source for datacoms applications
Author(s): Adrian Wonfor; Richard V. Penty; Ian H. White; Kenton White; Anthony E. Kelly; Craig Tombling
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

There is currently interest in using novel modulation formats for high bit-rate datacoms systems. 4-level modulation is an attractive method of halving the line-rate required for 40Gb/s systems. This 20GBaud line rate enables reduced bandwidth direct modulation of semiconductor lasers, thus reducing laser chirp, increasing transmission distances and also enabling simplified drive electronics to be used. In this experiment the 4-level signal is generated by electrically combining 2 de-correlated 20Gb/s data streams of differing amplitude from a pattern generator and then used to modulate a DFB laser. The directly modulated source is a DFB laser, emitting at 1310nm with a 3dB frequency response of 20GHz. This laser also has a very linear modulation response, with a spurious free dynamic range of over 100dBHz2/3 at 25°C and over 90 dBHz2/3 at 85°C. This highly linear behaviour is necessary to allow direct 4-level modulation source even at high temperature. The 40Gb/s 4-level signal is then transmitted along standard fibre and detected with an electrical receiver. In order to overcome the attenuation limited transmission distance of 20km a semiconductor optical amplifier, with a saturation power of 11dBm and fibre to fibre gain of 20dB, is used. The addition of an SOA enables transmission distances of 40km to be achieved with transmission penalties of as low as 2.6dB, even with the laser operating at 70°C. The robustness of the 4-level modulation is compared to NRZ and the impairments to both signals upon optical amplification are examined.

Paper Details

Date Published: 1 September 2004
PDF: 9 pages
Proc. SPIE 5452, Semiconductor Lasers and Laser Dynamics, (1 September 2004); doi: 10.1117/12.545710
Show Author Affiliations
Adrian Wonfor, Univ. of Cambridge (United Kingdom)
Richard V. Penty, Univ. of Cambridge (United Kingdom)
Ian H. White, Univ. of Cambridge (United Kingdom)
Kenton White, Bookham Technology Ltd. (Canada)
Anthony E. Kelly, Kamelian Ltd. (United Kingdom)
Craig Tombling, Kamelian Ltd. (United Kingdom)

Published in SPIE Proceedings Vol. 5452:
Semiconductor Lasers and Laser Dynamics
Daan Lenstra; Geert Morthier; Thomas Erneux; Markus Pessa, Editor(s)

© SPIE. Terms of Use
Back to Top