Share Email Print

Proceedings Paper

An in situ test structure for simultaneously determining multimaterial properties of a film
Author(s): Chi Hsiang Pan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a set of in-situ test structures for simultaneously determining residual stress (RS), Young's modulus (YM) and thermal expansion coefficient (TEC) of a film. Analytical models as functions of the displacement, geometry and material property of the test structures are theoretically derived for the task of extracting the film properties. This method utilizes available measurement apparatus and all the properties are identified and quantified on the same apparatus. The test structures consist of the measured film and the calibration film and are fabricated by a simple sacrificial-layer micromachining technique. The measured films made of undoped LPCVD polycrystalline silicon and the calibration film made of PECVD silicon nitride are used to demonstrate the effectiveness of the proposed method. The average calibrated residual stresses of undoped polysilicon films with deposition temperatures of 600°C and 620°C are 105± 5MPa and 240 ± 10MPa, respectively, and the corresponding Young's moduli are 170± 5GPa and 150 ± 5GPa. But the thermal expansion coefficient is approximately 2.7x 10-6 average.

Paper Details

Date Published: 16 August 2004
PDF: 8 pages
Proc. SPIE 5455, MEMS, MOEMS, and Micromachining, (16 August 2004); doi: 10.1117/12.545231
Show Author Affiliations
Chi Hsiang Pan, National Chin-Yi Institute of Technology (Taiwan)

Published in SPIE Proceedings Vol. 5455:
MEMS, MOEMS, and Micromachining
Hakan Urey; Ayman El-Fatatry, Editor(s)

© SPIE. Terms of Use
Back to Top