Share Email Print

Proceedings Paper

Temperature dependence of carrier dynamics in an inhomogeneous array of quantum dots
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A model portraying the carrier dynamics for an inhomogeneous array of quantum dots (QDs) interacting with a number of photon modes is presented. The model treats an ensemble of QDs with one confined level coupled to a wetting layer or quantum well level and explicitly considers only the electrons. The model is derived by numerically solving a set of rate equations that includes the inhomogeneity of the dot size, multimode photon modes and temperature dependence. Explicitly the inhomogeneous size distribution is included within a inhomogeneous broadening parameter and the temperature dependence within the homogeneous broadening parameter as well as carrier thermal escape. This is similar to the well-known Sugawara model but in the Sugawara model the carriers are assumed to occupy the inhomogeneous quantum dots equally at all temperatures. Experimental and theoretical work in ref. (2) and (3) believes this is true only for a low temperature regime. Above the temperature where a global minima exists, Fermi-Dirac statistics have been used. This results in different gain and lasing behaviour for higher temperatures from those calculated using the Sugawara model.

Paper Details

Date Published: 1 September 2004
PDF: 8 pages
Proc. SPIE 5452, Semiconductor Lasers and Laser Dynamics, (1 September 2004); doi: 10.1117/12.545058
Show Author Affiliations
Huei C. Wong, Univ. of Bristol (United Kingdom)
Milan Dragas, Univ. of Bristol (United Kingdom)
G. Bob Ren, Univ. of Bristol (United Kingdom)
Judy M. Rorison, Univ. of Bristol (United Kingdom)
Mark Hopkinson, Univ. of Sheffield (United Kingdom)

Published in SPIE Proceedings Vol. 5452:
Semiconductor Lasers and Laser Dynamics
Daan Lenstra; Geert Morthier; Thomas Erneux; Markus Pessa, Editor(s)

© SPIE. Terms of Use
Back to Top