Share Email Print
cover

Proceedings Paper

Knowledge-based architecture for airborne mine and minefield detection
Author(s): Sanjeev Agarwal; Deepak Menon; C. W. Swonger
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

One of the primary lessons learned from airborne mid-wave infrared (MWIR) based mine and minefield detection research and development over the last few years has been the fact that no single algorithm or static detection architecture is able to meet mine and minefield detection performance specifications. This is true not only because of the highly varied environmental and operational conditions under which an airborne sensor is expected to perform but also due to the highly data dependent nature of sensors and algorithms employed for detection. Attempts to make the algorithms themselves more robust to varying operating conditions have only been partially successful. In this paper, we present a knowledge-based architecture to tackle this challenging problem. The detailed algorithm architecture is discussed for such a mine/minefield detection system, with a description of each functional block and data interface. This dynamic and knowledge-driven architecture will provide more robust mine and minefield detection for a highly multi-modal operating environment. The acquisition of the knowledge for this system is predominantly data driven, incorporating not only the analysis of historical airborne mine and minefield imagery data collection, but also other “all source data” that may be available such as terrain information and time of day. This “all source data” is extremely important and embodies causal information that drives the detection performance. This information is not being used by current detection architectures. Data analysis for knowledge acquisition will facilitate better understanding of the factors that affect the detection performance and will provide insight into areas for improvement for both sensors and algorithms. Important aspects of this knowledge-based architecture, its motivations and the potential gains from its implementation are discussed, and some preliminary results are presented.

Paper Details

Date Published: 21 September 2004
PDF: 11 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.544719
Show Author Affiliations
Sanjeev Agarwal, Univ. of Missouri/Rolla (United States)
Deepak Menon, Univ. of Missouri/Rolla (United States)
C. W. Swonger, RAND Corp. (United States)


Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway, Editor(s)

© SPIE. Terms of Use
Back to Top