Share Email Print

Proceedings Paper

Multitarget tracking using multiple bistatic range measurements with probability hypothesis densities
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ronald Mahler's Probability Hypothesis Density (PHD) provides a promising framework for the passive coherent location of targets observed via multiple bistatic radar measurements. We consider tracking targets using only range measurements from a simple non-directional receiver that exploits non-cooperative FM radio transmitters as its "illuminators of opportunity." A target cannot be located at a single point by a particular transmitter-receiver pair, but rather it is located along a bistatic range ellipse determined by the position of the target relative to the receiver and transmitter. Target location is resolved by using multiple transmitter-receiver pairs and locating the target at the intersection of the resulting bistatic ellipses. Determining the intersection of these bistatic range ellipses and resolving the resultant ghost targets is generally a complex task. However, the PHD provides a convenient and simple means of fusing together the multiple range measurements to locate targets. We incorporate signal-to-noise ratios, probabilities of detection and false alarm, and bistatic range variances into our simulation.

Paper Details

Date Published: 9 August 2004
PDF: 10 pages
Proc. SPIE 5429, Signal Processing, Sensor Fusion, and Target Recognition XIII, (9 August 2004); doi: 10.1117/12.544027
Show Author Affiliations
Martin Tobias, Georgia Institute of Technology (United States)
Aaron D. Lanterman, Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5429:
Signal Processing, Sensor Fusion, and Target Recognition XIII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top