Share Email Print

Proceedings Paper

Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices
Author(s): Martin Chicoine; Alexandre Francois; C. Tavares; S. Chevobbe; Francois Schiettekatte; Vincent Aimez; Jacques Beauvais; Jean Beerens
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The surface layer of InP-based quantum well (QW) laser structures were implanted with As or P ions at energies ranging from 200 to 360 keV. The structures were then annealed at temperatures ranging from 650 to 750°C during 120s, allowing the defects created by implantation to diffuse, resulting in intermixing at the barrier-QW interfaces. The consequence of the intermixing is the blue shift of the QW photoluminescence wavelength. The blue shfit was studied as a function of the implantation temperature (25 or 200°C). Implantation-induced damage in the samples was characterized by Rutherford Backscattering in channeling mode (RBS-c) and correlated with the observed blue shift. It is found that blue shift is more efficient at higher implantation temperature, even if the resulting defect concentration is much lower. This is attributed to the diffusion of defects during high-temperature implantation, leading to a larger region containing defects contributing to intermixing. Also, when the implanted dose is too high, no blue shift is observed. This could be due to the formation of defect clusters that inhibit the subsequent diffusion of defects. Finally, the defect creation mechanisms within InP and InGaAs layers are found to have a significant impact on the resulting wavelength blue shift.

Paper Details

Date Published: 15 December 2003
PDF: 9 pages
Proc. SPIE 5260, Applications of Photonic Technology 6, (15 December 2003); doi: 10.1117/12.543537
Show Author Affiliations
Martin Chicoine, Univ. de Montreal (Canada)
Alexandre Francois, Univ. de Sherbrooke (Canada)
C. Tavares, Univ. de Sherbrooke (Canada)
S. Chevobbe, Univ. de Sherbrooke (Canada)
Francois Schiettekatte, Univ. de Montreal (Canada)
Vincent Aimez, Univ. de Sherbrooke (Canada)
Jacques Beauvais, Univ. de Sherbrooke (Canada)
Jean Beerens, Univ. de Sherbrooke (Canada)

Published in SPIE Proceedings Vol. 5260:
Applications of Photonic Technology 6
Roger A. Lessard; George A. Lampropoulos, Editor(s)

© SPIE. Terms of Use
Back to Top