Share Email Print
cover

Proceedings Paper

Probing signal design for seismic landmine detection
Author(s): James S. Martin; Waymond R. Scott Jr.; Gregg D. Larson; Peter H. Rogers; George S. McCall II
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper addresses the design of time-domain signals for use as seismic excitations in a system that images buried landmines. The goal of the design is the selection of a signal that provides sufficient contrast for the post-processed landmine image in the shortest possible measurement time. Although the goal is relatively straightforward and the problem appears similar to one of system identification for a linear time invariant (LTI) system, practical implementation of many commonly accepted approaches to the system-identification problem has proven difficult. The reason for this is that the system under consideration exhibits observable nonlinearity over the entire range of drive levels that are of interest. The problem is therefore constrained by the requirement that nonlinear effects be tolerable rather than imperceptible (i.e. that the nonlinearity be sufficiently weak that the system can be reasonably characterized as linear). Several candidate signal types that have been shown to offer good noise immunity for the LTI system identification problem were considered. These included circular chirps, binary-sequence-based (BSB) signals, and numerically optimized randomly seeded multisines. Based on purely experimental figures of merit, circular chirps with flat amplitude and linearly swept frequency offered the best performance among the signals that were tested.

Paper Details

Date Published: 21 September 2004
PDF: 12 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.542554
Show Author Affiliations
James S. Martin, Georgia Institute of Technology (United States)
Waymond R. Scott Jr., Georgia Institute of Technology (United States)
Gregg D. Larson, Georgia Institute of Technology (United States)
Peter H. Rogers, Georgia Institute of Technology (United States)
George S. McCall II, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top