Share Email Print
cover

Proceedings Paper

Error analysis in hyperspectral unmixing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The estimation of abundance coefficients, or unmixing, of hyperspectral data is important in a wide variety of applications. Assuming the major constituents, or endmembers, of a scene are known, the unmixing problem is relatively straightforward and easily solved using least-squares techniques. What is less well understood, however, is how error in the original data affects the final solution. This error generally takes two forms: measurement error introduced by the sensor, and modeling error that arises from the assumption of linear mixing. In this paper, we investigate how the unmixing process propagates error that arises from sensor noise. In particular, we derive statistical bounds on how much error can be expected in the estimation of abundance coefficients due to measurement error. We also discuss how this error may affect post-processing algorithms such as subpixel target detection, and consider ways to validate the noise model through the use of residuals.

Paper Details

Date Published: 12 August 2004
PDF: 11 pages
Proc. SPIE 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, (12 August 2004); doi: 10.1117/12.542501
Show Author Affiliations
David Gillis, Naval Research Lab. (United States)
Jeffrey Bowles, Naval Research Lab. (United States)


Published in SPIE Proceedings Vol. 5425:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top