Share Email Print
cover

Proceedings Paper

A portfolio of fine-resolution SAR images
Author(s): Armin W. Doerry; Vivian Dee Gutierrez; Lars M. Wells
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Sandia National Laboratories designs and builds Synthetic Aperture Radar (SAR) systems capable of forming high-quality exceptionally fine resolution images. Resolutions as fine as 4 inches (10 cm) in both slant range and azimuth are routinely formed in real time on board Sandia’s DeHavilland DHC-6 Twin Otter aircraft using a Ku-band SAR. Resolutions as fine as 6 inches (15 cm) in both slant range and azimuth are routinely formed using an X-band SAR. Careful system design allows high image quality as measured by nearly ideal Impulse Response (IPR) shapes, with typical Multiplicative Noise Ratios (MNR) of better than 20 dB, and a noise equivalent reflectivity usually better than -30 dB. Collection geometries routinely include squint angles 45 degrees both fore and aft of broadside, on either side of the aircraft. This paper offers a collection of high quality images representative of the output of Sandia’s testbed radar. High-quality fine-resolution images of a variety of target scenes will be displayed, with annotation describing relevant image parameters.

Paper Details

Date Published: 12 August 2004
PDF: 8 pages
Proc. SPIE 5410, Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, (12 August 2004); doi: 10.1117/12.542409
Show Author Affiliations
Armin W. Doerry, Sandia National Labs. (United States)
Vivian Dee Gutierrez, Sandia National Labs. (United States)
Lars M. Wells, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 5410:
Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII
Robert Trebits; Roger Appleby; David A. Wikner; James L. Kurtz; Neil N. Salmon, Editor(s)

© SPIE. Terms of Use
Back to Top