Share Email Print
cover

Proceedings Paper

Hyperspectral image segmentation using active contours
Author(s): Cheolha Pedro Lee; Wesley E. Snyder
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Multispectral or hyperspectral image processing has been studied as a possible approach to automatic target recognition (ATR). Hundreds of spectral bands may provide high data redundancy, compensating the low contrast in medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) images. Thus, the combination of spectral (image intensity) and spatial (geometric feature) information analysis could produce a substantial improvement. Active contours provide segments with continuous boundaries, while edge detectors based on local filtering often provide discontinuous boundaries. The segmentation by active contours depends on geometric feature of the object as well as image intensity. However, the application of active contours to multispectral images has been limited to the cases of simply textured images with low number of frames. This paper presents a supervised active contour model, which is applicable to vector-valued images with non-homogeneous regions and high number of frames. In the training stage, histogram models of target classes are estimated from sample vector-pixels. In the test stage, contours are evolved based on two different metrics: the histogram models of the corresponding segments and the histogram models estimated from sample target vector-pixels. The proposed segmentation method integrates segmentation and model-based pattern matching using supervised segmentation and multi-phase active contour model, while traditional methods apply pattern matching only after the segmentation. The proposed algorithm is implemented with both synthetic and real multispectral images, and shows desirable segmentation and classification results even in images with non-homogeneous regions.

Paper Details

Date Published: 12 August 2004
PDF: 11 pages
Proc. SPIE 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, (12 August 2004); doi: 10.1117/12.542356
Show Author Affiliations
Cheolha Pedro Lee, North Carolina State Univ. (United States)
Wesley E. Snyder, North Carolina State Univ. (United States)


Published in SPIE Proceedings Vol. 5425:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top