Share Email Print
cover

Proceedings Paper

Simplified quantum mechanics of light detection for quantum cryptography
Author(s): John M. Myers; F. Hadi Madjid
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Strong light signals are detected reliably on a time scale of a nanosecond; however, known detectors of weak light signals used in quantum key distribution (QKD) are much slower; they involve pulse-shaping arbiters based on flip-flops that take many nanoseconds to produce a stable output. Based on a recently shown logical independence of quantum particles from the devices that they are employed to explain, we make use of quantum mechanics fine-tuned so that particles serve not as rigid foundations but as improvised hypotheses useful in models that describe the recorded behavior of devices. On the experimental side, we augment the arbitrating flip-flop of a detector so that it fans out to a matched pair of auxiliary flip-flops, and show how this imparts to a detector a "self-awareness" of its own teetering, as announced by disagreements between the auxiliary flip-flops. We introduce a quantum model of this arrangement, invoking a pair of probe particles, and show this model corresponds well to an experiment. The matched pair of auxiliary flip-flops not only confirms the model of hesitation in a detector, but serves as an instrument, both conceptual and practical, that gives an added dimension to the characterization of signal sources.

Paper Details

Date Published: 24 August 2004
PDF: 12 pages
Proc. SPIE 5436, Quantum Information and Computation II, (24 August 2004); doi: 10.1117/12.542206
Show Author Affiliations
John M. Myers, Harvard Univ. (United States)
F. Hadi Madjid, Consultant (United States)


Published in SPIE Proceedings Vol. 5436:
Quantum Information and Computation II
Eric Donkor; Andrew R. Pirich; Howard E. Brandt, Editor(s)

© SPIE. Terms of Use
Back to Top