Share Email Print
cover

Proceedings Paper

Water-level model in density-based unsupervised classification
Author(s): Shangrong Deng; Kai Qian; Chih-Cheng Hung
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Water level model is an effective method in density-based classification. To improve the result, we use biased sampling, local similarity and popularity as preprocessing, and then apply the water-level model for classification. Biased sampling is to get some information about the global structure. Similarity and local density are mainly used to understand the local structure. In biased sampling, images are divided into many l*l patches and a sample pixel is selected from each patch. Similarity at a point p, denoted by sim(p), measures the change of gray level between point p an its neighborhood N(p). Besides using biased sampling to combine spectral and spatial information, we use similarity and local popularity in selecting sample points. A sample point is chosen based on the minimum value of sin(p) + [1-P(p)] after normalization. The selected pixel is a better representative, especially near the border of an object. Kernel estimators are employed to obtain smooth density approximation. The water-level model is relatively easy and effective when the density function is smoothed. To make it more effective in other cases, one has to deal with small spikes and bumps. To get rid of the small spikes, we establish a threshold ê[f(P1) - f(P 2)*(P1-P 2) ê > c*l*l , where c is a constant, P1 is a local maximum point to be tested and P2 is the nearest local minimum form P1. The condition is only related to the size of the patches l*l. After using the average filter, we choose l to be the square root of the fifth peak if it is between 5 and 20, otherwise set l = 10. Preliminary experiments have been conducted using proposed methods with different values of the constant c in the threshold condition. Experimental results are provided.

Paper Details

Date Published: 15 July 2004
PDF: 8 pages
Proc. SPIE 5438, Visual Information Processing XIII, (15 July 2004); doi: 10.1117/12.541939
Show Author Affiliations
Shangrong Deng, Southern Polytechnic State Univ. (United States)
Kai Qian, Southern Polytechnic State Univ. (United States)
Chih-Cheng Hung, Southern Polytechnic State Univ. (United States)


Published in SPIE Proceedings Vol. 5438:
Visual Information Processing XIII
Zia-ur Rahman; Robert A. Schowengerdt; Stephen E. Reichenbach, Editor(s)

© SPIE. Terms of Use
Back to Top