Share Email Print
cover

Proceedings Paper

Multiband radar for homeland security
Author(s): Raghbir S. Tahim; James Foshee; Kai Chang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Radar systems, which can operate in a variety of frequency bands, could provide significant flexibility in the operation of future Battle-space Management and Air Defense Systems (BMADS). Phased array antennas, which support high pulse rates and power, are well suited for surveillance, tracking and identifying the targets. These phased array antennas with the multiplicity of elements in phased array could provide accurate beam pointing, very rapid changes in beam location, and multiple beams, including algorithms for null steering for unwanted signals. No single radar band possesses characteristics that provide optimum performance. For example, L and S-bands are typically considered the best frequency ranges for acquisition and X-band is best for tracking. For many of the current phased array antennas the circuit components are narrow-band and therefore are not suitable for multi-band radar design. In addition, the cost, size, power dissipation, the weight, and, in general, the complexity has limited the development of multi-band phased array antenna systems. The system bandwidth of antenna array employing high loss phase shifters for beam steering also becomes limited due to the dispersion loss from the beam steering. As a result phased array radar design can result in a very large, complex, expensive, narrow band and less efficient system. This paper describes an alternative design approach in the design of wide-band phased array radar system based on multi-octave band antenna elements; and wide-band low loss phase shifters, switching circuits and T/R modules.

Paper Details

Date Published: 15 September 2004
PDF: 12 pages
Proc. SPIE 5403, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III, (15 September 2004); doi: 10.1117/12.541861
Show Author Affiliations
Raghbir S. Tahim, RST Scientific Research, Inc. (United States)
James Foshee, Air Force Research Lab. (United States)
Kai Chang, Texas A&M Univ. (United States)


Published in SPIE Proceedings Vol. 5403:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top