Share Email Print

Proceedings Paper

Adsorption of RDX on clay
Author(s): Yleana Marie Colon; Liliana F. Alzate; Carmen Michelle Ramos; Alberto Santana; Samuel P. Hernandez-Rivera; Miguel E. Castro; Miguel Munoz; Nairmen Mina
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The chemical spectroscopic signature of the RDX-clay mineral complex has been investigated by means of reflectance FT-IR micro spectroscopy. The mechanical analysis method was used to separate the clay from the other soil components. The soil was obtained from the University of Puerto Rico at Mayagüez (UPRM) campus backyard. B3LYP/6-311G** calculations performed on RDX helped to determine the most stable conformations, their symmetry, and vibrational spectra. The FTIR technique confirmed the existence of two different RDX solid phases, known as the α-RDX and β-RDX, which have different symmetries and revealed significant differences in their spectra. The IR microspectroscopic study showed that the RDX-clay mineral complex and its interactions can be detected using the FTIR technique at a low concentration of 1000 part-per-millions. The results also suggest that the vibrational modes presenting changes in the different vibrational spectra correspond to the C-N and NO2 groups. In comparison with α-RDX spectrum, the complex exhibits three bands at 740, 754 and 792 cm-1. A 12 cm-1 red shift is observed in this last band assign to the C-N stretching and NO2 scissoring vibrations in the equatorial position. Differences in the spectra were also seen in the shifted bands at 942 and 953 cm-1. These vibrational modes are assigned to the ring breathing and N-N stretching vibration in the axial position for the -phase. Comparison of the spectra of the α-RDX, the β-RDX and the RDX mixed with clay in the range from 1190 to 1700 cm-1 clearly indicated that the FTIR technique can be used to study the interaction between RDX and clay. The results also indicate that the interaction between the RDX and the clay minerals affects mainly the NO2 groups of the explosive molecules. It is suggested that the electron donor nitrogen atoms from RDX are interacting with the electron acceptor oxygen atoms of the siloxane surface that is present in the majority of clays.

Paper Details

Date Published: 21 September 2004
PDF: 12 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.541703
Show Author Affiliations
Yleana Marie Colon, Univ. de Puerto Rico/Mayaguez (United States)
Liliana F. Alzate, Univ. de Puerto Rico/Mayaguez (United States)
Carmen Michelle Ramos, Univ. de Puerto Rico/Mayaguez (United States)
Alberto Santana, Univ. de Puerto Rico/Mayaguez (United States)
Samuel P. Hernandez-Rivera, Univ. de Puerto Rico/Mayaguez (United States)
Miguel E. Castro, Univ. de Puerto Rico/Mayaguez (United States)
Miguel Munoz, Univ. de Puerto Rico/Mayaguez (United States)
Nairmen Mina, Univ. de Puerto Rico/Mayaguez (United States)

Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top