Share Email Print
cover

Proceedings Paper

Spatial modeling of occlusion patterns applied to the detection of surface-laid mines
Author(s): Magnus P. Lundberg; Christopher L. Brown; Magnus S.G. Uppsall
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Images recorded in ground areas potentially containing surface laid land mines are considered. The first hypothesis is that the image is of clutter (grass) only, while the alternative is that the image contains a partially occluded (covered) land mine in addition to the clutter. In such a scenario, the occlusion pattern is unknown and has to be treated as a nuisance parameter. In a previous paper it was shown that deterministic treatment of the unknown occlusion pattern, in companion with the applied model, renders a substantial increase in detector performance as compared to employment of the traditional additive model. However, a deterministic assumption ignores possible correlation and additional gains could be possible by taking the spatial properties into account. In order to incorporate knowledge regarding the occlusion, the spatial distribution is characterized in terms of an underlying Markov Random Field (MRF) model. A major concern with MRF models is their complexity. Therefore, in addition to this, a less computationally demanding technique to accommodate the occlusion behavior is also proposed. The main purpose of this paper is to investigate if significant gains are possible by acknowledging the spatial dependence. Evaluation on data using real occluded targets however indicates that the gain seem to be marginal.

Paper Details

Date Published: 21 September 2004
PDF: 12 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.541558
Show Author Affiliations
Magnus P. Lundberg, Lulea Univ. of Technology (Sweden)
Christopher L. Brown, Technische Univ. Darmstadt (Germany)
Magnus S.G. Uppsall, Swedish Defence Research Agency (Sweden)


Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway, Editor(s)

© SPIE. Terms of Use
Back to Top