Share Email Print

Proceedings Paper

Estimating the backscatter spectral dependence and relative concentration for multiple aerosol materials from lidar data
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Detection and estimation of materials in the atmosphere by lidar has heretofore required that the spectral dependence of the relevant cross section coefficients -- backscatter in the case of aerosols and absorptivity for vapors -- be known in advance. While this typically is a reasonable assumption in the case of vapor, the aerosol backscatter coefficients are complicated functions of particle size, shape, and refractive index, and are therefore usually not well characterized a priori. Using incorrect parameters will give biased concentration estimates and impair discrimination ability. This paper describes an approach for estimating both the spectral dependence of the aerosol backscatter and relative concentration range-dependence of a set of materials using multi-wavelength lidar. The approach is based on state-space filtering that applies a Kalman filter in range for concentration, and updates the backscatter spectral estimates through a sequential least-squares algorithm at each time step. The method is illustrated on aerosol-release data of the bio-simulant ovalbumin collected by ECBC during field tests in 2002, as well as synthetic data sets.

Paper Details

Date Published: 13 August 2004
PDF: 8 pages
Proc. SPIE 5416, Chemical and Biological Sensing V, (13 August 2004); doi: 10.1117/12.541548
Show Author Affiliations
Russell E. Warren, EO-Stat, Inc. (United States)
Richard G. Vanderbeek, U.S. Army Edgewood Chemical Biological Ctr. (United States)

Published in SPIE Proceedings Vol. 5416:
Chemical and Biological Sensing V
Patrick J. Gardner, Editor(s)

© SPIE. Terms of Use
Back to Top