Share Email Print

Proceedings Paper

Energy harvesting concepts for small electric unmanned systems
Author(s): Muhammad A. Qidwai; James P. Thomas; James C. Kellogg; Jared N. Baucom
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

Paper Details

Date Published: 21 July 2004
PDF: 12 pages
Proc. SPIE 5387, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, (21 July 2004); doi: 10.1117/12.540912
Show Author Affiliations
Muhammad A. Qidwai, Geo-Centers, Inc. (United States)
James P. Thomas, Naval Research Lab. (United States)
James C. Kellogg, Naval Research Lab. (United States)
Jared N. Baucom, Naval Research Lab. (United States)

Published in SPIE Proceedings Vol. 5387:
Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics
Dimitris C. Lagoudas, Editor(s)

© SPIE. Terms of Use
Back to Top