Share Email Print
cover

Proceedings Paper

Damage-detection-oriented model for a cracked rectangular plate
Author(s): Di Wu; S. S. Law
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Many approaches on modeling of cracks in structural members have been reported in the literatures. However, most of them are explicitly developed for the purpose of studying the changes in static and dynamic responses of the structure due to the crack damage, which is a forward problem mathematically. Thereby the use of these models is inconvenient or even impossible for detecting damage in structures from vibration measurements, which is usually an inverse problem. An anisotropic damage model is proposed in this paper for detecting edge-parallel cracks in a rectangular thin plate. The cracked plate element is represented by an equivalent plate element with orthotropic anisotropic material expressed in terms of the virgin material stiffness and a tensor of damage variables. A non-model-based damage identification approach is developed incorporating the proposed anisotropic model and the estimated uniform load surface curvature (ULSC) of the plate from vibration measurements. The actual length of the crack is then predicted from the identified variables based on conservation law of potential energy for crack growth. The validity of the methodology is demonstrated by numerical examples and experiment results with comparison with results from existing crack identification theory.

Paper Details

Date Published: 29 July 2004
PDF: 12 pages
Proc. SPIE 5391, Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (29 July 2004); doi: 10.1117/12.540902
Show Author Affiliations
Di Wu, Hong Kong Polytechnic Univ. (Hong Kong China)
S. S. Law, Hong Kong Polytechnic Univ. (Hong Kong China)


Published in SPIE Proceedings Vol. 5391:
Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Shih-Chi Liu, Editor(s)

© SPIE. Terms of Use
Back to Top