Share Email Print
cover

Proceedings Paper

Kinetics of corneal thermal shrinkage
Author(s): David Borja; Fabrice Manns; William E. Lee; Jean-Marie Parel
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Purpose: The purpose of this study was to determine the effects of temperature and heating duration on the kinetics of thermal shrinkage in corneal strips using a custom-made shrinkage device. Methods: Thermal shrinkage was induced and measured in corneal strips under a constant load placed while bathed in 25% Dextran irrigation solution. A study was performed on 57 Florida Lions Eye Bank donated human cadaver eyes to determine the effect of temperature on the amount and rate of thermal shrinkage. Further experiments were performed on 20 human cadaver eyes to determine the effects of heating duration on permanent shrinkage. Data analysis was performed to determine the effects of temperature, heating duration, and age on the amount and kinetics of shrinkage. Results: Shrinkage consisted of two phases: a shrinkage phase during heating and a regression phase after heating. Permanent shrinkage increased with temperature and duration. The shrinkage and regression time constants followed Arrhenius type temperature dependence. The shrinkage time constants where calculated to be 67, 84, 121, 560 and 1112 (s) at 80, 75, 70, 65, and 60°C respectively. At 65°C the permanent shrinkage time constant was calculated to be 945s. Conclusion: These results show that shrinkage treatments need to raise the temperature of the tissue above 75°C for several seconds in order to prevent regression of the shrinkage effect immediately after treatment and to induce the maximum amount of permanent irreversible shrinkage.

Paper Details

Date Published: 13 July 2004
PDF: 9 pages
Proc. SPIE 5314, Ophthalmic Technologies XIV, (13 July 2004); doi: 10.1117/12.540880
Show Author Affiliations
David Borja, Univ. of Miami (United States)
Fabrice Manns, Univ. of Miami (United States)
William E. Lee, Univ. of Miami School of Medicine (United States)
Jean-Marie Parel, Univ. of Miami School of Medicine (United States)


Published in SPIE Proceedings Vol. 5314:
Ophthalmic Technologies XIV
Fabrice Manns; Per G. Soderberg; Arthur Ho, Editor(s)

© SPIE. Terms of Use
Back to Top