Share Email Print
cover

Proceedings Paper

Rapid high-spatial-resolution imaging of buried landmines using ESPI
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent work in acoustic landmine detection has shown that many landmines exhibit a multi-mode vibration pattern. To fully map the vibration pattern of these modes requires spatial resolutions on the order of millimeters. An optical technique that lends itself to such vibration sensing is an electronic speckle pattern interferometer (ESPI). In this work the double-pulse ESPI system has been used for the vibration measurement of the ground surface. The principle of method is based on recording two specklegrams of the object with two laser pulses synchronized with the vibration peak and the vibration valley respectively. The 2D vibration amplitude spatial distribution is obtained by subtracting two specklegrams and processing the received correlation fringe pattern. The experimental setup uses a mechanical shaker to excite vibrations in the ground to significantly increase the vibration amplitudes at the spot of interest and a laser Doppler vibrometer to detect the resonant frequency of the mine. Experimental results are presented from laboratory experiments. The spatial maps of the vibrating ground over buried antitank and antipersonnel landmines are studied. The effect of the vibration of a granular material like sand on the speckle decorrelation is discussed. This material is based upon work supported by the U. S. Army Communications-Electronics Command Night Vision and Electronic Sensors Directorate under Contract DAAB15-02-C-0024.

Paper Details

Date Published: 21 September 2004
PDF: 7 pages
Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, (21 September 2004); doi: 10.1117/12.540517
Show Author Affiliations
James M. Sabatier, National Ctr. for Physical Acoustics/The Univ. of Mississippi (United States)
Vyacheslav Aranchuk, MetroLaser, Inc. (United States)
W. C. Kirkpatrick Alberts, National Ctr. for Physical Acoustics/The Univ. of Mississippi (United States)


Published in SPIE Proceedings Vol. 5415:
Detection and Remediation Technologies for Mines and Minelike Targets IX
Russell S. Harmon; J. Thomas Broach; John H. Holloway, Editor(s)

© SPIE. Terms of Use
Back to Top