Share Email Print
cover

Proceedings Paper

Integrated sensing networks in composite materials
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Increasingly, the demand to monitor structures in service is driving technology in new directions. Advances in many areas including novel sensor technologies afford new opportunities in structural health monitoring. We present efforts to develop structural composite materials which include networks of embedded sensors with decision-making capabilities that extend the functionality of the composite materials to be information-aware. The next generation of structural systems will include the capability to acquire, process, and if necessary respond to structural or other types of information. This work brings together many important developments over the last few years in several areas: developments in composites and the emergence of multifunctional composites, the emergence of a broad range of new sensors, smaller and lower power microelectronics with increased and multiple integrated functionality, and the emergence of algorithms that extract important structural health information from large data sets. This work seeks to leverage these individual advances by solving the challenges needed to integrate these into an information-aware composite structure. We present details of efforts to integrate and entrap connectorized microelectronic components within fiber/conductor braided bundles to minimize their impact as composite crack initiation centers. The bundles include conductors to transmit electric signals for power and communications. They are suitable for inclusion in woven composite fabrics or directly in the composite lay-up. The low-power electronic devices can operate on a multi-drop and point-to-point networks. Future directions include implementing in-network local processing, adding a greater range of sensors, and developing the composite processing techniques that allow sensor network integration.

Paper Details

Date Published: 29 July 2004
PDF: 5 pages
Proc. SPIE 5391, Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (29 July 2004); doi: 10.1117/12.540209
Show Author Affiliations
Anthony F. Starr, Univ. of California/San Diego (United States)
Sia Nemat-Nasser, Univ. of California/San Diego (United States)
David R. Smith, Univ. of California/San Diego (United States)
Thomas A. Plaisted, Univ. of California/San Diego (United States)


Published in SPIE Proceedings Vol. 5391:
Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Shih-Chi Liu, Editor(s)

© SPIE. Terms of Use
Back to Top