Share Email Print
cover

Proceedings Paper

An experimental comparison between several active composite actuators for power generation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of piezoelectric materials for power harvesting has gained significant interest over the past few years. The majority of research on this subject has sought to quantify the amount of energy generated in power harvesting applications, or to develop methods of improving the amount of energy generated. Usually, a monolithic PZT material with a traditional electrode pattern and poled through its thickness is used in power harvesting research projects. In recent years, however, several companies and research institutions have begun to develop and market a broad range of piezoelectric composite sensor/actuator packages, each conceived for specific operational advantages and characteristics. Commonly, these devices are employed in control and vibration suppression applications, and their potential for use in power harvesting systems remains largely unknown. Two frequently implemented design techniques for improving the performance of such actuators are the use of interdigitated electrodes and piezofibers. This paper seeks to experimentally quantify the differences in power harvesting application performance between several of these new actuators and to identify the reasons for their relative performance characteristics. A special focus on the structural and compositional differences between each actuator is incorporated in the discussion of the effectiveness of each actuator as power harvesting devices.

Paper Details

Date Published: 26 July 2004
PDF: 9 pages
Proc. SPIE 5390, Smart Structures and Materials 2004: Smart Structures and Integrated Systems, (26 July 2004); doi: 10.1117/12.540192
Show Author Affiliations
Henry A. Sodano, Virginia Polytechnic Institute and State Univ. (United States)
Justin M. Lloyd, Virginia Polytechnic Institute and State Univ. (United States)
Daniel J. Inman, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 5390:
Smart Structures and Materials 2004: Smart Structures and Integrated Systems
Alison B. Flatau, Editor(s)

© SPIE. Terms of Use
Back to Top