Share Email Print
cover

Proceedings Paper

New fabrication method of metallic closed cellular materials containing organic materials
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New method to fabricate the metallic closed cellular material containing organic materials for the damping systems has been developed. Powder particles of polystyrene coated with a nickel-phosphorus alloy layer using electro-less plating were pressed into pellets and sintered at high temperatures by a furnace and a spark plasma sintering (SPS) system. A metallic closed cellular material containing polystyrene was then fabricated. The physical, mechanical and damping properties of this material were measured. The density of this material is smaller than that of other structural metals. The results of the compressive tests show that this material has the different stress-strain curves among the specimens that have different thickness of the cell walls and the sintering temperatures of the specimens affect the compressive strength of each specimen. Also, it seems that the results of the compressive tests show that this material has high-energy absorption and Young's modulus of this material depends on the thickness of the cell walls. The loss factor of this material was measured and the results show that this material has a large loss factor than that of structural metals. These obtained results emphasize that this metallic closed cellular material can be utilized as energy absorbing material and passive damping material.

Paper Details

Date Published: 29 July 2004
PDF: 8 pages
Proc. SPIE 5389, Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (29 July 2004); doi: 10.1117/12.540172
Show Author Affiliations
Satoshi Kishimoto, National Institute for Materials Science (Japan)
Norio Shinya, National Institute for Materials Science (Japan)


Published in SPIE Proceedings Vol. 5389:
Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top