Share Email Print
cover

Proceedings Paper

Analysis of SMA hybrid composite structures using commercial codes
Author(s): Travis L. Turner; Hemant D. Patel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

Paper Details

Date Published: 26 July 2004
PDF: 12 pages
Proc. SPIE 5383, Smart Structures and Materials 2004: Modeling, Signal Processing, and Control, (26 July 2004); doi: 10.1117/12.540002
Show Author Affiliations
Travis L. Turner, NASA Langley Research Ctr. (United States)
Hemant D. Patel, MSC.Software Corp. (United States)


Published in SPIE Proceedings Vol. 5383:
Smart Structures and Materials 2004: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top