Share Email Print
cover

Proceedings Paper

Development of hybrid SOI-based microgravimetric sensors
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A hybrid system consisting of a resonant piezo layer (RPL) and a resonant SOI micromechanical sensor is conceived in this work as highly sensitive gravimetric sensor for applications in various fields. The idea consists in using PZT screen-printed elements, behaving as thickness-mode resonators, coupled to a micro-mechanical resonator based on a SOI technology. The PZT resonator induces oscillations to the micromechanical device and, if the resonance condition is matched for this latter system, a sensitivity of 5000 Hz/μg can be obtained when a variation of the proof mass occurs. Prototypes of both the mentioned two constitutive parts have been separately realized by the authors showing potentials for batch production. Several different experimental MEMS prototypes, mainly made by a central proof-mass sustained by four compliant beams anchored to its four corners, have been realized. Both Front Side and Back Side DRIE etching procedures have been performed improving the proof mass value with respect to a different set of prototypes realized by using a standard CMOS technology. Even if a low resonance frequency characterize the realized micro-prototypes a drastically improved value of the quality factor allow to obtain very high gravimetric sensitivity then to detect very small changes in the proof mass value due i.e. to chemical or physical compound absorption over the mass surface. Electrical or optical sensing can be adopted, depending on materials embedded into the considered device, as already demonstrated by the authors. Polysilicon strain gauges have been embedded into the springs while optical readout can be addressed by using a novel class of metal-dielectric photonic-band gap materials. In this latter case a process step, which consists of depositing suitable thin films, must be take into account.

Paper Details

Date Published: 29 July 2004
PDF: 11 pages
Proc. SPIE 5389, Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (29 July 2004); doi: 10.1117/12.539983
Show Author Affiliations
Nicolo Savalli, Univ. of Catania (Italy)
Salvatore Baglio, Univ. of Catania (Italy)
Salvatore Castorina, Univ. of Catania (Italy)
Vincenzo Sacco, Univ. of Catania (Italy)
Vittorio Ferrari, Univ. of Brescia (Italy)


Published in SPIE Proceedings Vol. 5389:
Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top