Share Email Print
cover

Proceedings Paper

An analytical model of the mechanical properties of the single-crystal macro-fiber composite actuator
Author(s): Justin M. Lloyd; R. Brett Williams; Daniel J. Inman; W. Keats Wilkie
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

While exhibiting powerful characteristics, monolithic piezoelectric sensors and actuators suffer from many drawbacks due to inherent material properties and implementation issues. As a result of their stiff structure and primary operating principle, monolithic piezoelectric wafers perform poorly in a variety of important engineering applications. Piezoelectric Fiber Composites (PFCs) offer one possible solution to these limitations. Mechanically flexible and functioning on the basis of the d33 effect, these actuators enable and improve many piezoelectric applications. The NASA-Langley Research Center recently developed the Macro-Fiber Composite (MFC) actuator to address several shortcomings in the operational characteristics of competing PFC packages. While the construction of this actuator results in many advantages over comparable PFCs, potential exists for improvement in the design of the MFC. Thus, the single-crystal MFC is proposed. Single-crystal PMN, a specific piezoceramic compound, comprises the piezoceramic fibers of the proposed device, contributing larger piezoelectric coupling, higher bandwidth and higher stiffness to the MFC configuration. Development of this new actuator necessitates extensive characterization of its electromechanical properties. This paper describes the development and computational results of a short-circuit stiffness model that produces the four independent mechanical properties which describe the single-crystal MFC. Modeling results are compared to those of the standard MFC.

Paper Details

Date Published: 21 July 2004
PDF: 10 pages
Proc. SPIE 5387, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, (21 July 2004); doi: 10.1117/12.539927
Show Author Affiliations
Justin M. Lloyd, Virginia Polytechnic Institute and State Univ. (United States)
R. Brett Williams, Virginia Polytechnic Institute and State Univ. (United States)
Daniel J. Inman, Virginia Polytechnic Institute and State Univ. (United States)
W. Keats Wilkie, NASA Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 5387:
Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics
Dimitris C. Lagoudas, Editor(s)

© SPIE. Terms of Use
Back to Top