Share Email Print
cover

Proceedings Paper

Design and testing of a bidirectional magnetostrictive-hydraulic hybrid actuator
Author(s): Joshua A. Ellison; Jayant Sirohi; Inderjit Chopra
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents the design and testing of a magnetostrictive-hydraulic hybrid actuator driven by Terfenol-D. The actuator is based on the frequency rectification of small displacements from a Terfenol-D rod by using one-directional check valves. The continuous fluid flow produced from this actuation is then used to drive a hydraulic output cylinder. A transducer was built in order to actuate the Terfenol-D rod in the pump. In addition, an active valve system was designed and built to achieve bi-directional capabilities in the actuator. Successful testing of the actuator in uni-directional and bi-directional modes was carried out. The actuator was found to have an unloaded velocity of 6 in/sec, a blocked force of 10 lbs, and a bi-directional stroke of 0.1 in/cycle at 10 Hz.

Paper Details

Date Published: 26 July 2004
PDF: 12 pages
Proc. SPIE 5390, Smart Structures and Materials 2004: Smart Structures and Integrated Systems, (26 July 2004); doi: 10.1117/12.539919
Show Author Affiliations
Joshua A. Ellison, Univ. of Maryland/College Park (United States)
Jayant Sirohi, Univ. of Maryland/College Park (United States)
Inderjit Chopra, Univ. of Maryland/College Park (United States)


Published in SPIE Proceedings Vol. 5390:
Smart Structures and Materials 2004: Smart Structures and Integrated Systems
Alison B. Flatau, Editor(s)

© SPIE. Terms of Use
Back to Top