Share Email Print
cover

Proceedings Paper

Nanoscale hybrid protein/polymer functionalized materials
Author(s): Dean Ho; Ben Chu; Hyeseung Lee; Carlo D. Montemagno
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Block copolymer-based membrane technology represents a versatile class of nanoscale materials in which biomolecules, such as membrane proteins, can be reconstituted. Our work has demonstrated the fabrication of large-area, protein- enhanced membranes that possess significant performance improvements in protein functionality. Among its many advantages over conventional lipid-based membrane systems, block copolymers can mimic natural cell biomembrane environments in a single chain, enabling large-area membrane fabrication using methods like Langmuir-Blodgett (LB) deposition, or spontaneous protein-functionalized nano-vesicle formation. The membrane protein, Bacteriorhodopsin (BR), found in Halobacterium Halobium, is a light-actuated proton pump that develops gradients towards the demonstration of coupled functionality with other membrane proteins to effect ATP production, or production of electricity through Bacteriorhodopsin activity-dependent reversal of Cytochrome C Oxidase (COX), found in Rhodobacter Sphaeroides. Using quantum dot-labeled, engineered protein constructs, we have demonstrated large-scale insertion of proteins into block copolymer Langmuir-Blodgett (LB) films as well as measurable pH changes based upon light-actuated proton pumping. Light actuated-activity across the protein-functionalized membrane when fully enclosed in a sol-gel matrix has also been observed using impedance spectroscopy. Initial data has suggested a significant pH change of up to 1.75 in a volume of 100 mL and surface area of 0.317cm2, a level that is capable of powering a number of proton-gradient dependent proteins towards the buildup of a robust, hybrid protein/polymer device. Recent atomic force microscopy studies of the protein-embedded polymer film samples have revealed the formation of protein aggregate-based pattern generation with very uniform torus-shaped rings. Current work focused towards characterizing the effects that various pattern formations can have on the efficiency of protein functionality, as well as film stability in an effort to develop a robust polymer membrane will also be discussed.

Paper Details

Date Published: 29 July 2004
PDF: 18 pages
Proc. SPIE 5389, Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (29 July 2004); doi: 10.1117/12.539315
Show Author Affiliations
Dean Ho, Univ. of California/Los Angeles (United States)
Ben Chu, Univ. of California/Los Angeles (United States)
Hyeseung Lee, Univ. of California/Los Angeles (United States)
Carlo D. Montemagno, Univ. of California/Los Angeles (United States)


Published in SPIE Proceedings Vol. 5389:
Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top