Share Email Print

Proceedings Paper

Theoretical evaluation of electroactive-polymer based on micropump diaphragm for air flow control
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer, based actuation micropump diaphragm (PAMPD) has been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems.

Paper Details

Date Published: 29 July 2004
PDF: 10 pages
Proc. SPIE 5389, Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (29 July 2004); doi: 10.1117/12.538924
Show Author Affiliations
Tian-Bing Xu, National Institute of Aerospace (United States)
Ji Su, NASA Langley Research Ctr. (United States)
Qiming Zhang, The Pennsylvania State University (United States)

Published in SPIE Proceedings Vol. 5389:
Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top