Share Email Print
cover

Proceedings Paper

Smart damage prediction: a distance-to-bifurcation-based approach
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Damage detection and prediction is essential for structural health monitoring. Vibration based methods have been used in health monitoring. In this work damage is proposed to be a nonlinear dynamical phenomenon and can be analyzed by utilizing the bifurcation theory. A methodology for predicting failure is proposed which utilizes the concepts of distance to stability boundary as estimated by bifurcation analysis. The proposed methodology is illustrated by developing bifurcation boundary for a two degree of freedom nonlinear mass-spring-damper system. Two damage models are investigated to illustrate the utility the proposed methodology in capturing and estimating the evolution of damage phenomenon.

Paper Details

Date Published: 21 July 2004
PDF: 11 pages
Proc. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, (21 July 2004); doi: 10.1117/12.538541
Show Author Affiliations
Amit Shukla, Miami Univ. (United States)
Amanda Frederick, Miami Univ. (United States)


Published in SPIE Proceedings Vol. 5394:
Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top