Share Email Print

Proceedings Paper

Enhancing MEMS sensors accuracy via random noise characterization and calibration
Author(s): Quang M. Lam; Thomas Wilson; Ronald Contillo; Darrin Buck
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a design concept that can be used to monitor Micro-Electro-Mechanical Systems (MEMS) inertial sensors' random noise characteristics and dynamically track them for cancellation. The concept consists of a two-prong compensation approach offering both filtering and cancellation capability to effectively null out the MEMS sensor noise sources. The first path compensation will be fundamentally designed using high order filtering and calibration concept. This path is intended to effectively calibrate and remove high noise drift errors inherently existing in the MEMS sensors by using external aiding sensors data available on-board the spacecraft such as star tracker or GPS sensors. MEMS sensors' bias, scale factor, and misalignment stability errors will all be taken care of using this first prong design approach. The second compensation system will be designed using signal isolation and stochastic model propagation concept allowing on-line MEMS sensor's noise estimation and characterization. This second path is intended to dynamically monitor changes and identify MEMS inertial sensors' random noise parameters such as scale factor error, angular random walk, angular white noise, and rate random walk in a real-time fashion so that proper noise spectrum signatures can be obtained to update the process noise matrix of the calibration filter. This latter design approach can also be applied and implemented as a signal-conditioning device for MEMS sensors' internal self-calibration. The proposed algorithm is provided along with its preliminary results evaluated using simulation.

Paper Details

Date Published: 15 September 2004
PDF: 12 pages
Proc. SPIE 5403, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III, (15 September 2004); doi: 10.1117/12.538257
Show Author Affiliations
Quang M. Lam, Swales Aerospace (United States)
Thomas Wilson, Swales Aerospace (United States)
Ronald Contillo, Swales Aerospace (United States)
Darrin Buck, Swales Aerospace (United States)

Published in SPIE Proceedings Vol. 5403:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top