Share Email Print
cover

Proceedings Paper

Diamond optics: fabrication and applications
Author(s): Fredrik K. Nikolajeff; Mikael Karlsson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have developed a method for fabricating almost any type of optical surfaces in diamond. The method consists of the following steps: First, a polymer film, spun onto diamond substrates of optical quality, is patterned by lithographic processes. Next, the surface relief is transferred into the underlying diamond by use of inductively coupled plasma dry etching in an oxygen/argon chemistry. Using this technique, we have successfully demonstrated the fabrication of diamond spherical microlenses, blazed gratings, Fresnel lenses, subwavelength gratings and diffractive fan-out elements. Applications for diamond optics include space technology, high power lasers and optoelectronic devices. In a first real world application we have manufactured subwavelength antireflective gratings which will be tested for use with a future space telescope. The wavelength region of interest will be in the far-IR. Our fabricated antireflective gratings increased the transmitted radiation from 71% to 98% between wavelengths of 21.5 μm and 26.5 μm.

Paper Details

Date Published: 29 December 2003
PDF: 6 pages
Proc. SPIE 5347, Micromachining Technology for Micro-Optics and Nano-Optics II, (29 December 2003); doi: 10.1117/12.537595
Show Author Affiliations
Fredrik K. Nikolajeff, Uppsala Univ. (Sweden)
Mikael Karlsson, Uppsala Univ. (Sweden)


Published in SPIE Proceedings Vol. 5347:
Micromachining Technology for Micro-Optics and Nano-Optics II
Eric G. Johnson; Gregory P. Nordin, Editor(s)

© SPIE. Terms of Use
Back to Top