Share Email Print
cover

Proceedings Paper

Fully automatic and reference-marker-free image stitching method for full-spine and full-leg imaging with computed radiography
Author(s): Xiaohui Wang; David H. Foos; James Doran; Michael K. Rogers
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Full-leg and full-spine imaging with standard computed radiography (CR) systems requires several cassettes/storage phosphor screens to be placed in a staggered arrangement and exposed simultaneously to achieve an increased imaging area. A method has been developed that can automatically and accurately stitch the acquired sub-images without relying on any external reference markers. It can detect and correct the order, orientation, and overlap arrangement of the subimages for stitching. The automatic determination of the order, orientation, and overlap arrangement of the sub-images consists of (1) constructing a hypothesis list that includes all cassette/screen arrangements, (2) refining hypotheses based on a set of rules derived from imaging physics, (3) correlating each consecutive sub-image pair in each hypothesis and establishing an overall figure-of-merit, (4) selecting the hypothesis of maximum figure-of-merit. The stitching process requires the CR reader to over scan each CR screen so that the screen edges are completely visible in the acquired sub-images. The rotational displacement and vertical displacement between two consecutive sub-images are calculated by matching the orientation and location of the screen edge in the front image and its corresponding shadow in the back image. The horizontal displacement is estimated by maximizing the correlation function between the two image sections in the overlap region. Accordingly, the two images are stitched together. This process is repeated for the newly stitched composite image and the next consecutive sub-image until a full-image composite is created. The method has been evaluated in both phantom experiments and clinical studies. The standard deviation of image misregistration is below one image pixel.

Paper Details

Date Published: 6 May 2004
PDF: 9 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.536807
Show Author Affiliations
Xiaohui Wang, Eastman Kodak Co. (United States)
David H. Foos, Eastman Kodak Co. (United States)
James Doran, Eastman Kodak Co. (United States)
Michael K. Rogers, Eastman Kodak Co. (United States)


Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top