Share Email Print
cover

Proceedings Paper

Ultrashort Mach-Zehnder space switch based on quantum dots
Author(s): Ravindran Prasanth; Jos E. Haverkort; Joachim H. Wolter
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We investigate whether the discrete energy levels and the high peak absorption in quantum dots (QDs) provide an opportunity for increasing the electro-optic and nonlinear optical properties. For this purpose we calculate the electrorefraction spectra of QDs starting from the Luttinger-Kohn Hamiltonian and using a plane-wave expansion for solving the eigenstates of the QD. For a pyramidal InAs/GaAs quantum dot, we find a high peak electrorefraction of 0.35 for TE-polarization, which is 35x larger than in a quantum well. In the tail of the quantum dot absorption spectrum, we find an electrorefraction of 1.3.10-2 at an absorption loss of 0.15 dB/cm. Finally we investigate the refractive index variation due to state filling in InAs/InP cylindrical quantum dots.

Paper Details

Date Published: 26 July 2004
PDF: 8 pages
Proc. SPIE 5383, Smart Structures and Materials 2004: Modeling, Signal Processing, and Control, (26 July 2004); doi: 10.1117/12.536777
Show Author Affiliations
Ravindran Prasanth, Technische Univ. Eindhoven (Netherlands)
Jos E. Haverkort, Technische Univ. Eindhoven (Netherlands)
Joachim H. Wolter, Technische Univ. Eindhoven (Netherlands)


Published in SPIE Proceedings Vol. 5383:
Smart Structures and Materials 2004: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top