Share Email Print
cover

Proceedings Paper

Assessments on process parameters' influences to the proximity correction
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The on-chip variation (OCV) should be critically controlled to obtain the high speed performance in logic devices. The variation from proximity dominantly contributes to OCV. This proximity effect can be compensated by applying well-treated optical proximity correction (OPC). Therefore, the accuracy of OPC is needed, and methods to enhance its result have to be devised. The optical proximity behaviors are severely varied according to the material and optical conditions. In point of material, the proximity property is affected by species of photo-resist (PR) and change of post exposure bake (PEB) conditions. 3σ values of proximity variation are changed from 9.3 nm to 15.2 nm according to PR species. Also, proximity variations change from 16.2 nm to 13.8 nm is observed according to PEB condition. Proximity variations changes of 11.6 nm and 15.2 nm are measured by changing the illumination condition. In order not to seriously deteriorate OPC, these factors should be fixed after the OPC rules are extracted. Proximity variations of 11.4 nm, 13.9 nm and 15.2 nm are observed for the mask mean-to-targets (MTT) of 0 nm, 2nm, and 4nm, respectively. The decrease the OPC grid size enhances the correction resolution and the OCV is reduced. The selective bias rule is generated by model using grid size of 1 nm and 0.5 nm. For the nominal CD of 87 nm, proximity variations are measured to be 14.6 nm and 11.4 nm for 1 nm and 0.5 nm grid sizes, respectively. The enhancement amount of proximity variations are 9.2 nm corresponding to 39% improvement. The CD uniformity improvement for adopting the small grid size is confirmed by measuring the CD uniformity on real SRAM pattern. CD uniformities are measured 11nm and 9.1nm for grid size of 1 nm and 0.5 nm, respectively. 22% improvement of the CD uniformity is achieved.

Paper Details

Date Published: 24 May 2004
PDF: 9 pages
Proc. SPIE 5375, Metrology, Inspection, and Process Control for Microlithography XVIII, (24 May 2004); doi: 10.1117/12.536341
Show Author Affiliations
Eun-Mi Lee, Samsung Electronics Co., Ltd. (South Korea)
Sung-Woo Lee, Samsung Electronics Co., Ltd. (South Korea)
Doo-Youl Lee, Samsung Electronics Co., Ltd. (South Korea)
Soo-Han Choi, Samsung Electronics Co., Ltd. (South Korea)
Joo-On Park, Samsung Electronics Co., Ltd. (South Korea)
Sung-Gon Jung, Samsung Electronics Co., Ltd. (South Korea)
Gi-Sung Yeo, Samsung Electronics Co., Ltd. (South Korea)
Jung-Hyeon Lee, Samsung Electronics Co., Ltd. (South Korea)
Han-Ku Cho, Samsung Electronics Co., Ltd. (South Korea)
Woo-Sung Han, Samsung Electronics Co., Ltd. (South Korea)


Published in SPIE Proceedings Vol. 5375:
Metrology, Inspection, and Process Control for Microlithography XVIII
Richard M. Silver, Editor(s)

© SPIE. Terms of Use
Back to Top