Share Email Print
cover

Proceedings Paper

Synchronization of pulmonary scintigraphy by respiratory flow and by impedance plethysmography
Author(s): Olivier Guivarc'h; Alexandre Turzo; Dimitris Visvikis; Yves Bizais
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Image blurring as a result of patient motion, including organ movement, can cause loss of sensitivity in the detection of disease. The use of gated protocols using external signals to synchronize the acquisition with the motion of the organ of interest may provide a solution. Although such a solution has been implemented in cardiac imaging, the implementation of respiratory gating is more challenging considering the irregular nature of respiratory motion. In this work we investigated the use of two different physiological signals; namely respiratory flow and impedance plethysmography for synchronization of pulmonary scintigraphy with respiratory motion. An acquisition and post-processing signal interface was developed using LabVIEW in order to allow detection and comparison of the two signals for the same patient. Methodology was also developed for the rejection of irregular respiratory cycles based on mean amplitude, overall cycle duration and the cycle inspiration to expiration duration ratio (I/E). Rejection criteria based on tidal volume were also examined using the respiratory flow signal. Our data demonstrate that the two respiratory signals investigated are equivalent with only a phase shift difference present. In the case of respiratory flow, irregular cycles were rejected by setting acceptance limits at 40% and 30% around the mean for the I/E and the amplitude or duration of the cycle respectively. In the case of impedance plethysmography a limit of 50% for all rejection criteria was found to be optimum. Finally, a dynamic acquisition protocol was developed and tested providing synchronized scintigraphic images using both types of recorded respiratory signals.

Paper Details

Date Published: 12 May 2004
PDF: 10 pages
Proc. SPIE 5370, Medical Imaging 2004: Image Processing, (12 May 2004); doi: 10.1117/12.536329
Show Author Affiliations
Olivier Guivarc'h, LaTIM, INSERM (France)
Alexandre Turzo, LaTIM, INSERM (France)
Dimitris Visvikis, LaTIM, INSERM (France)
Yves Bizais, LaTIM, INSERM (France)


Published in SPIE Proceedings Vol. 5370:
Medical Imaging 2004: Image Processing
J. Michael Fitzpatrick; Milan Sonka, Editor(s)

© SPIE. Terms of Use
Back to Top