Share Email Print
cover

Proceedings Paper

Chemically amplified photoresist characterization using interdigitated electrodes: an improved method for determining the Dill C parameter
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have recently developed a technique that utilizes capacitance data from resist coated interdigitated electrodes to measure the kinetic rate constant of photoacid generation (commonly referred to as the Dill C parameter) for photoacid generators in chemically amplified resists. The work presented in this paper focuses on a recently improved version of the IDE Dill C measurement technique. The original version of the technique required coating several IDEs with resist films containing different loadings of photoacid generator and then using the capacitance data from these IDEs to calculate linear mixing relationships between IDE capacitance and the content of PAG or photoproducts within the resist film. The improved version of the technique reported here totally eliminates the need for this “calibration process” through the use of normalized capacitance data. Elimination of the need to measure linear mixing relationships independently for each PAG and polymer combination gives the improved technique many advantages over the prior version. These include improved curve fitting and accuracy of Dill C calculations; fewer raw materials, IDEs, and experimental time; and most importantly, the potential to measure the Dill C for a resist from a single IDE with no prior knowledge of the resist’s photoacid generator type or loading. A detailed derivation of the normalization scheme is presented in this paper, along with evidence of the dramatic improvement in model curve fit that can be achieved using this technique. In addition, Dill C parameters measured for five different photoacid generators with both the original and normalized version of the IDE technique are presented to demonstrate that both techniques measure the same Dill C parameter and hence are describing the same physical phenomena.

Paper Details

Date Published: 14 May 2004
PDF: 12 pages
Proc. SPIE 5376, Advances in Resist Technology and Processing XXI, (14 May 2004); doi: 10.1117/12.536243
Show Author Affiliations
Cody M. Berger, Georgia Institute of Technology (United States)
Clifford L. Henderson, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5376:
Advances in Resist Technology and Processing XXI
John L. Sturtevant, Editor(s)

© SPIE. Terms of Use
Back to Top