Share Email Print
cover

Proceedings Paper

Design and construction of a flat-panel-based cone-beam computed tomography (FPD-CBCT) imaging system through the adaptation of a commercially available CT system: recent data
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The purpose of this presentation is to show how a commercially available spiral CT has been modified for use as the electro-mechanical scanner hardware for a prototype flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system. FPD-CBCT has the benefits of isotropic high resolution, low contrast sensitivity and 3D visualization. In contrast to spiral CT, which acquires a series of narrow slices, FPD-CBCT acquires a full volume of data (limited by the cone angle and the FPD active area) in one <= 360° scan. Our goal was to use a GE HighSpeed Advantage (HSA) CT system as the basis for an FPD-CBVCT imaging prototype for performing phantom, animal and patient imaging studies. Specific electromechanical and radiographic subsystems controlled include: gantry rotation and tilt, patient table positioning, rotor control, mA control, the high frequency generator (kVp, exposure time, repetition rate) and image data acquisition. Also, a 2D full field FPD replaced the 1D detector, as well as the existing slit collimator was retrofitted to a full field collimator to allow x-ray exposure over the entire active area of the FPD. In addition, x-ray projection data was acquired at 30 fps. Power and communication signals to control modules on the rotating part of the gantry were transmitted through integrated slip rings on the gantry. A stationary host computer controlled mechanical motion of the gantry and sent trigger signals to on-board electronic interface modules to control data acquisition and radiographic functions. Acquired image data was grabbed to the system memory of an on-board industrial computer, saved to hard disk and downloaded through a network connection to the stationary computer for 3D reconstruction. Through the synchronized control of the pulsed x-ray exposures, data acquisition, and gantry rotation the system achieved a circle cone beam image acquisition protocol. With integrated control of the gantry tilt and of the position and translation speed of the patient table, spiral cone beam and circle-plus-arc cone beam image acquisition protocols will also be achieved. Performance is being evaluated with optical encoders, standard dosimetry equipment and phantom studies.

Paper Details

Date Published: 6 May 2004
PDF: 6 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.536082
Show Author Affiliations
David L. Conover, Univ. of Rochester Medical Ctr. (United States)
Ruola Ning, Univ. of Rochester Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top