Share Email Print
cover

Proceedings Paper

Measurements of an optimized beam for x-ray computed mammotomography
Author(s): Randolph L. McKinley; Ehsan Samei; Caryl N. Brzymialkiewicz; Martin P. Tornai; Carey E. Floyd
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Simulation results from previous studies indicate that a quasi-monochromatic x-ray beam can be produced using a newly developed beam filtration technique. This technique utilizes heavy filtration with novel high Z filter materials having k-edges just above those of CsI, producing a near monochromatic beam with mean energy optimized for detection. The value of a near monochromatic x-ray source for a fully 3D tomography application is the expected improved ability to separate tissues with very small differences in attenuation coefficients for a range of uncompressed breast sizes while maintaining dose levels at or below existing dual view mammography. In this study, we experimentally investigate a set of filter materials (Al, Cu, Ag, Ce, W, and Pb), filter thicknesses (10th, 100th, and 200th VL), and tube potentials (40-80 kVp) using a newly constructed test apparatus. Initial experimental results corroborate simulations and indicate that this approach can improve image quality (SNR) at constant dose. Al, Cu, W, and Pb provide optimal exposure efficiency results at 60 kVp and above. Decreasing relative improvements are observed above 100th VL filter thickness at 78 cm SID. Results are obtained without significant tube heating (except at 40 kVp). In addition, simulations indicate significant reductions in beam hardening. This optimized beam will be incorporated into a novel cone-beam x-ray computed mammotomography sub-system together with an emission tomograph in a dual modality CT/SPECT application specific emission and transmission tomography system for fully 3D uncompressed breast imaging.

Paper Details

Date Published: 6 May 2004
PDF: 9 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.536033
Show Author Affiliations
Randolph L. McKinley, Duke Univ. Medical Ctr. (United States)
Duke Univ. (United States)
Ehsan Samei, Duke Univ. Medical Ctr. (United States)
Duke Univ. (United States)
Caryl N. Brzymialkiewicz, Duke Univ. Medical Ctr. (United States)
Duke Univ. (United States)
Martin P. Tornai, Duke Univ. Medical Ctr. (United States)
Duke Univ. (United States)
Carey E. Floyd, Duke Univ. Medical Ctr. (United States)
Duke Univ. (United States)


Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top