Share Email Print
cover

Proceedings Paper

Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering
Author(s): Srinivasan Rajagopalan; Michael J. Yaszemski; Richard A. Robb
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

Paper Details

Date Published: 12 May 2004
PDF: 10 pages
Proc. SPIE 5370, Medical Imaging 2004: Image Processing, (12 May 2004); doi: 10.1117/12.535927
Show Author Affiliations
Srinivasan Rajagopalan, Mayo Clinic and Foundation (United States)
Michael J. Yaszemski, Mayo Clinic and Foundation (United States)
Richard A. Robb, Mayo Clinic and Foundation (United States)


Published in SPIE Proceedings Vol. 5370:
Medical Imaging 2004: Image Processing
J. Michael Fitzpatrick; Milan Sonka, Editor(s)

© SPIE. Terms of Use
Back to Top