Share Email Print

Proceedings Paper

Scanning laser tomography: influence of working distance
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The purpose of this study is to determine the effects of the working distance on the accuracy of confocal scanning laser tomography using the Heidelberg Retina Tomograph II. Twenty eyes of normal patients were imaged and the topographies of the retinal surfaces were recorded. Each eye was imaged first at the optimum working distance, establishing the baseline exam, and then re-imaged at four different working distances (one at a shorter distance than optimum, three more at longer distances than optimum, variation done in 2 mm increments). The recorded data at various working distances was compared to the baseline data. The deviation from the baseline was compared to the normal standard deviation for the instrument reported in the literature. Data is within the normal standard deviation when staying between -2 mm and +4 mm of optimum working distance. Some stereometric parameters vary greater than the normal standard deviation if working distance is more than +4 mm from optimum. To minimize error in recorded data, the operator of the Heidelberg Retinal Tomograph II should image the patient’s eye between -2 mm and +4 mm of optimum working distance. Staying in this range should provide results that vary within the normal standard deviation.

Paper Details

Date Published: 6 May 2004
PDF: 9 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.535903
Show Author Affiliations
Jaclyn Vinson, Univ. of California/San Diego (United States)
Dirk-Uwe G. Bartsch, Univ. of California/San Diego (United States)

Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top