Share Email Print
cover

Proceedings Paper

Online detection of low-frequency functional connectivity
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (<0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a pontential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states (such as cocaine injection). Thus, detection of these functional connectivity patterns may help to serve as a guage of normal brain activity. Currently, functional connectivity detection is applied only in offline post-processing analysis. Online detection methods have been applied to detect task activation in functional MRI. This allows real-time analysis of fMRI results, and could be important in detecting short-term changes in functional states. In this work, we develop an outline algorithm to detect low frequency resting state functional connectivity in real time. This will extend connectivity analysis to allow online detection of changes in "resting state" brain networks.

Paper Details

Date Published: 30 April 2004
PDF: 8 pages
Proc. SPIE 5369, Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, (30 April 2004); doi: 10.1117/12.535764
Show Author Affiliations
Scott J. Peltier, Emory Univ./Georgia Tech Biomedical Engineering (United States)
Stephen M. LaConte, Emory Univ./Georgia Tech Biomedical Engineering (United States)
Xiaoping Hu, Emory Univ./Georgia Tech Biomedical Engineering (United States)


Published in SPIE Proceedings Vol. 5369:
Medical Imaging 2004: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)

© SPIE. Terms of Use
Back to Top