Share Email Print
cover

Proceedings Paper

Single-layer and bilayer resist processes for EUV-type integrations
Author(s): Richard D. Peters; Colita Parker; Jonathan Cobb; Eric Luckowski; Eric Weisbrod; Bill Dauksher
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The high absorption of extreme ultraviolet (EUV) radiation by all materials necessitates the use of thin photoresist films with thicknesses less than 200 nm for EUV lithography to ensure good imaging. Thinning the resist thickness below 150 nm or even 100 nm may produce benefits such as increased sensitivity, larger process latitude, and increased resolution. However, these potential benefits as well as the required need for thin resists come at the expense of reduced etch resistance. EUV lithography will require the use of some type of thin imaging technique such as top-surface imaging, bilayer resists, or single layer resists with hardmasks in order to achieve the necessary etch resistance. In this paper, we discuss results that demonstrate the feasibility of using thin resist approaches for fabricating working devices. We have successfully fabricated working 130-nm-node SRAMs using a single layer 248 nm ultrathin resist (< 150-nm-thick) with a hardmask for both gate and contact layers on the same wafer. This result represents the first demonstration of working devices fabricated using ultrathin resists on multiple device layers. We also present initial patterning experiments using a 193 nm bilayer resist for brightfield applications such as the gate layer, and compare imaging performance to that of a 193 nm single layer resist. The advantages and disadvantages of the single layer and bilayer approaches are discussed.

Paper Details

Date Published: 14 May 2004
PDF: 11 pages
Proc. SPIE 5376, Advances in Resist Technology and Processing XXI, (14 May 2004); doi: 10.1117/12.535643
Show Author Affiliations
Richard D. Peters, Motorola, Inc. (United States)
Colita Parker, Motorola, Inc. (United States)
Jonathan Cobb, Motorola, Inc. (United States)
Eric Luckowski, Motorola, Inc. (United States)
Eric Weisbrod, Motorola, Inc. (United States)
Bill Dauksher, Motorola, Inc. (United States)


Published in SPIE Proceedings Vol. 5376:
Advances in Resist Technology and Processing XXI
John L. Sturtevant, Editor(s)

© SPIE. Terms of Use
Back to Top