Share Email Print
cover

Proceedings Paper

Angiographic analysis of blood flow modification in cerebral aneurysm models with a new asymmetric stent
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have built new asymmetric stents for minimally invasive endovascular treatment of cerebral aneurysms. Each asymmetric stent consists of a commercial stent with a micro-welded circular mesh patch. The blood flow modification in aneurysm-vessel phantoms due to these stents was evaluated using x-ray angiographic analysis. However, the density difference between the radiographic contrast and the blood gives rise to a gravity effect, which was evaluated using an initial optical dye-dilution experiment. For the radiographic evaluations, curved-vessel phantoms instead of simple straight side-wall aneurysm phantoms were used in the characterization of meshes/stents. Six phantoms (one untreated, one treated with a commercial stent, and four treated with different asymmetric stents) with similar morphologies were used for comparison. We calculated time-density curves of the aneurysm region and then calculated the peak value (Pk) and washout rate (1/τ) after analytical curve fitting. Flow patterns in the angiograms showed reduction of vortex flow and slow washout in the dense mesh patch treated aneurysms. The meshes reduced Pk down to 21% and 1/τ down to 12% of the values for the untreated case. In summary, new asymmetric stents were constructed and their evaluation demonstrates that they may be useful in the endovascular treatment of aneurysms.

Paper Details

Date Published: 30 April 2004
PDF: 12 pages
Proc. SPIE 5369, Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, (30 April 2004); doi: 10.1117/12.535347
Show Author Affiliations
Zhou Wang, Univ. at Buffalo (United States)
Ciprian N. Ionita, Univ. at Buffalo (United States)
Stephen Rudin, Univ. at Buffalo (United States)
Kenneth R. Hoffmann, Univ. at Buffalo (United States)
Adam B. Paxton, Univ. at Buffalo (United States)
Daniel R. Bednarek, Univ. at Buffalo (United States)


Published in SPIE Proceedings Vol. 5369:
Medical Imaging 2004: Physiology, Function, and Structure from Medical Images
Amir A. Amini; Armando Manduca, Editor(s)

© SPIE. Terms of Use
Back to Top