Share Email Print
cover

Proceedings Paper

Mechanisms of defect generation in chemically amplified resist processes
Author(s): Takeshi Shimoaoki; Ryoichiro Naito; Junichi Kitano
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As the minimum feature size of electronic devices continues to shrink, the industry is moving from 248-nm wavelength KrF excimer laser sources to shorter wavelength 193-nm ArF excimer and 157-nm F2 excimer sources to achieve the higher resolution lithographic processes that are required. This requires optimum control over CD(critical dimension), but also the ability to minimize and reduce device defects is critically important. Satellite defects and various other kinds of defects were found to occur in the development process when chemically amplified resists are used in 248-nm lithography, and these defects clearly have an adverse effect on yields. Now that the industry is moving from KrF (248- nm) to ArF (193- nm) exposure systems, this means the requirements to control and reduce these micro defects are more exacting than ever before. In this paper we describe the generation behavior of defects caused by bottom anti-reflective coating (BARC) and the adherence behavior of defects onto the BARC. In this work we show that the generation behavior of defects is clearly affected by the thickness of the BARC, and the adherence behavior of defects is well explained by potential analysis measurements. With the transition toward shorter wavelength exposure systems, varying the thickness of the BARC is likely to have a major impact on the CD in lithography processes, but controlling the thickness of BARC layers is also extremely important from the standpoint of controlling defects. While we certainly must continue in our efforts to develop better resists that minimum defects, our results suggest that we must also focus attention on optimizing and closely controlling the entire lithographic process.

Paper Details

Date Published: 14 May 2004
PDF: 10 pages
Proc. SPIE 5376, Advances in Resist Technology and Processing XXI, (14 May 2004); doi: 10.1117/12.535088
Show Author Affiliations
Takeshi Shimoaoki, Tokyo Electron Kyushu Ltd. (Japan)
Ryoichiro Naito, Tokyo Electron Kyushu Ltd. (Japan)
Junichi Kitano, Tokyo Electron Kyushu Ltd. (Japan)


Published in SPIE Proceedings Vol. 5376:
Advances in Resist Technology and Processing XXI
John L. Sturtevant, Editor(s)

© SPIE. Terms of Use
Back to Top