Share Email Print
cover

Proceedings Paper

Slice-to-volume registration using mutual information between probabilistic image classifications
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Intensity based registration algorithms have proved to be accurate and robust for 3D-3D registration tasks. However, these methods utilise the information content within an image, and therefore their performance is hindered for image data that is sparse. This is the case for the registration of a single image slice to a 3D image volume. There are some important applications that could benefit from improved slice-to-volume registration, for example, the planning of magnetic resonance (MR) scans or cardiac MR imaging, where images are acquired as stacks of single slices. We have developed and validated an information based slice-to-volume registration algorithm that uses vector valued probabilistic images of tissue classification that have been derived from the original intensity images. We believe that using such methods inherently incorporates into the registration framework more information about the images, especially in images containing severe partial volume artifacts. Initial experimental results indicate that the suggested method can achieve a more robust registration compared to standard intensity based methods for the rigid registration of a single thick brain MR slice, containing severe partial volume artifacts in the through-plane direction, to a complete 3D MR brain volume.

Paper Details

Date Published: 12 May 2004
PDF: 10 pages
Proc. SPIE 5370, Medical Imaging 2004: Image Processing, (12 May 2004); doi: 10.1117/12.534966
Show Author Affiliations
Adam Grant Chandler, King's College London (United Kingdom)
Thomas Netsch, Philips Research Labs. (Germany)
Chris A. Cocosco, Philips Research Labs. (Germany)
Julia A. Schnabel, King's College London (United Kingdom)
David J. Hawkes, King's College London (United Kingdom)


Published in SPIE Proceedings Vol. 5370:
Medical Imaging 2004: Image Processing
J. Michael Fitzpatrick; Milan Sonka, Editor(s)

© SPIE. Terms of Use
Back to Top