Share Email Print

Proceedings Paper

Region of interest (ROI) computed tomography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High-resolution computed tomography (CT) reconstructions currently require either full field of view (FOV) exposure, resulting in high dose, or region of interest (ROI) exposure, resulting in artifacts. To obtain high-resolution 3D reconstruction of an ROI with minimal artifiacts, we have developed a method involving a non-uniform ROI beam filter to reduce dose outside the ROI while acquiring the ROI at a higher dose. High-resolution, high-dose full-field projections ofa phontom were obtained. ROIs in the images were selected and the low-dose data outside the ROI were simulated by adding various levels of noise to the projection data corresponding to a dose of 1/16 and 1/256 of the original dose. For an ROI of 30% FOV, artifacts in the reconstructed ROI were minimal for both dose reduction levels. For an ROI of 10% FOV, artifacts remained minimal only for the 1/16th dose case. The effect of the presence of a high contrast object outside the ROI was also studied. We found that the intensity of the artifacts increases with the contrast of the object, its size, and its distance from the axis of rotation. CT using an ROI filter provides a way to reconstruct an ROI with reduced integral dose and yet with minimal artifacts and improved spatial resolution.

Paper Details

Date Published: 6 May 2004
PDF: 8 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.534568
Show Author Affiliations
Ravishankar N. Chityala, Univ. at Buffalo (US) and Erie County Medical Ctr. (United States)
Kenneth R. Hoffmann, Univ. at Buffalo (United States)
Daniel R. Bednarek, Univ. at Buffalo (US) and Erie County Medical Ctr. (United States)
Stephen Rudin, Univ. at Buffalo (US) and Erie County Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top