Share Email Print
cover

Proceedings Paper

Contaminant dry-down rates in photolithography purge gases
Author(s): Allan Tram; Russell J. Holmes; Jeffrey J. Spiegelman; Daniel Alvarez
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Adsorption and desorption rates of a 6-component hydrocarbon mixture and SO2 have been studied on the surfaces of Ultra High Purity (UHP) components under the presence of parts-per-billion (ppb) contaminant levels. The dry-down rates are monitored to sub parts-per-trillion (ppt) levels. In the hydrocarbon test, stainless steel components are confirmed to be more effective than Teflon during dry-down. Dry-down rates for hydrocarbons on stainless steel (SS) surfaces depend on the molecular weight of the contaminant; heavier molecules take longer to dry-down. The dry-down study for SO2 revealed that it will desorb from Teflon surfaces quicker than it will desorb from stainless steel. The result of UHP valves tested for outgassing indicates that Extreme Clean Dry Air (XCDA) was able to remove hydrocarbons to lower levels and cleanup faster than with a N2 purge.

Paper Details

Date Published: 24 May 2004
PDF: 7 pages
Proc. SPIE 5375, Metrology, Inspection, and Process Control for Microlithography XVIII, (24 May 2004); doi: 10.1117/12.534296
Show Author Affiliations
Allan Tram, Mykrolis Corp. (United States)
Russell J. Holmes, Mykrolis Corp. (United States)
Jeffrey J. Spiegelman, Mykrolis Corp. (United States)
Daniel Alvarez, Mykrolis Corp. (United States)


Published in SPIE Proceedings Vol. 5375:
Metrology, Inspection, and Process Control for Microlithography XVIII
Richard M. Silver, Editor(s)

© SPIE. Terms of Use
Back to Top